首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   879篇
  免费   67篇
  国内免费   3篇
  2023年   2篇
  2021年   10篇
  2020年   9篇
  2019年   5篇
  2018年   12篇
  2017年   5篇
  2016年   16篇
  2015年   26篇
  2014年   22篇
  2013年   60篇
  2012年   38篇
  2011年   52篇
  2010年   26篇
  2009年   30篇
  2008年   40篇
  2007年   37篇
  2006年   43篇
  2005年   43篇
  2004年   51篇
  2003年   46篇
  2002年   42篇
  2001年   26篇
  2000年   40篇
  1999年   35篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   24篇
  1991年   21篇
  1990年   20篇
  1989年   17篇
  1988年   15篇
  1987年   13篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   9篇
  1982年   10篇
  1981年   3篇
  1980年   2篇
  1979年   8篇
  1978年   6篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1969年   2篇
  1966年   1篇
排序方式: 共有949条查询结果,搜索用时 171 毫秒
871.
872.
873.
Rat liver contains two cytosolic enzymes (TBER1 and TBER2) that reduce 6-tert-butyl-2,3-epoxy-5-cyclohexene-1,4-dione into its 4R- and 4S-hydroxy metabolites. In this study, we cloned the cDNA for TBER1 and examined endogenous substrates using the homogenous recombinant enzyme. The cDNA encoded a protein composed of 323 amino acids belonging to the aldo-keto reductase family. The recombinant TBER1 efficiently oxidized 17beta-hydroxysteroids and xenobiotic alicyclic alcohols using NAD+ as the preferred coenzyme at pH 7.4, and showed low activity towards 20alpha- and 3alpha-hydroxysteroids, and 9-hydroxyprostaglandins. The enzyme was potently inhibited by diethylstilbestrol, hexestrol and zearalenone. The coenzyme specificity, broad substrate specificity and inhibitor sensitivity of the enzyme differed from those of rat NADPH-dependent 17beta-hydroxysteroid dehydrogenase type 5, which was cloned from the liver and characterized using the recombinant enzyme. The mRNA for TBER1 was highly expressed in rat liver, gastrointestinal tract and ovary, in contrast to specific expression of 17beta-hydroxysteroid dehydrogenase type 5 mRNA in the liver and kidney. Thus, TBER1 represents a novel type of 17beta-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. In addition, TBER2 was identified as 3alpha-hydroxysteroid dehydrogenase on chromatographic analysis of the enzyme activities in rat liver cytosol and characterization of the recombinant 3alpha-hydroxysteroid dehydrogenase.  相似文献   
874.
Reduction of the range of motion (ROM) until prosthetic impingement of a total hip replacement may lead to frequent impingement, subluxation and dislocation especially for patients with good hip movement. The ROM until prosthetic impingement can be calculated using the technical ROM (theta) and the cup and neck positions by a previously created mathematical formula. A larger (theta) with proper cup and neck positions results in a larger ROM. However there was only one paper written in English, which revealed the optimum theoretical combination of cup and neck anteversions. ROM of more than 110 degrees flexion, 30 degrees internal-rotation at 90 degrees flexion, 30 degrees extension and 40 degrees external-rotation were defined as the criteria for essential ROM for ADL. The safe-zones for combined cup anteversion (betaanat) and neck anteversion (b) were defined as the areas that fulfill all the criteria of ROM without prosthetic impingement. The safe-zones were created for 35 degrees , 45 degrees and 55 degrees cup abductions (alpha) and for 120 degrees and 135 degrees (theta). The safe-zones for combined (betaanat) and (b) were much larger for a 135 degrees (theta) than a 120 degrees (theta). Their safe-zones showed that (b) should be reduced if (betaanat) is increased and choosing a lower (alpha) requires that the sum of (betaanat) and (b) should be higher and vice versa. A (theta) of more than 135 degrees is recommended as it further increases the size of the safe-zone and provides a larger ROM, and the optimum values of combined cup and neck anteversions can be estimated by the formula: (alpha) + (betaanat) + 0.77(b) = 84.3.  相似文献   
875.
876.
Mouse hepatitis virus (MHV) infection spreads from MHV-infected DBT cells, which express the MHV receptor CEACAM1 (MHVR), to BHK cells, which are devoid of the receptor, by intercellular membrane fusion (MHVR-independent fusion). This mode of infection is a property of wild-type (wt) JHMV cl-2 virus but is not seen in cultures infected with the mutant virus JHMV srr7. In this study, we show that soluble MHVR (soMHVR) potentiates MHVR-independent fusion in JHMV srr7-infected cultures. Thus, in the presence of soMHVR, JHMV srr7-infected DBT cells overlaid onto BHK cells induce BHK cell syncytia and the spread of JHMV srr7 infection. This does not occur in the absence of soMHVR. soMHVR also enhanced wt virus MHVR-independent fusion. These effects were dependent on the concentration of soMHVR in the culture and were specifically blocked by the anti-MHVR monoclonal antibody CC1. Together with these observations, direct binding of soMHVR to the virus spike (S) glycoprotein as revealed by coimmunoprecipitation demonstrated that the effect is mediated by the binding of soMHVR to the S protein. Furthermore, fusion of BHK cells expressing the JHMV srr7 S protein was also induced by soMHVR. These results indicated that the binding of soMHVR to the S protein expressed on the DBT cell surface potentiates the fusion of MHV-infected DBT cells with nonpermissive BHK cells. We conclude that the binding of soMHVR to the S protein converts the S protein to a fusion-active form competent to mediate cell-cell fusion, in a fashion similar to the fusion of virus and cell membranes.  相似文献   
877.
DNA variation on the non-recombining portion of the Y chromosome was examined in 610 male samples from 14 global populations in north, east, and southeast Asia, and other regions of the world. Eight haplotypes were observed by analyses of seven biallelic polymorphic markers ( DYS257(108), DYS287, SRY(4064), SRY(10831), RPS4Y(711), M9, and M15) and were unevenly distributed among the populations. Maximum parsimony tree for the eight haplotypes showed that these haplotypes could be classified into four distinct lineages characterized by three key mutations: an insertion of the Y Alu polymorphic (YAP) element at DYS287, a C-to-G transversion at M9, and a C-to-T transition at RPS4Y(711). Of the four lineages, three major lineages (defined by the allele of YAP(+), M9-G, and RPS4Y-T, respectively) accounted for 98.6% of the Asian populations studied, indicating that these three paternal lineages have contributed to the formation of modern Asian populations. Moreover, phylogenetic analysis revealed three monophyletic Asian clusters, which consisted of north Asian, Japanese, and Han Chinese/southeast Asian populations, respectively. Coalescence analysis in the haplotype tree showed that the estimated ages for three key mutations ranged from 53,000 to 95,000 years, suggesting that the three lineages were separated from one another during early stages of human evolutionary history. The distribution patterns of the Y-haplotypes and mutational ages for the key markers suggest that three major groups with different paternal ancestries separately migrated to prehistoric east and southeast Asia.  相似文献   
878.
Umami taste is imparted predominantly by monosodium glutamate (MSG) and 5′-ribonucleotides. Recently, several different classes of hydrophobic umami-imparting compounds, the structures of which are quite different from MSG, have been reported. To obtain a novel umami-imparting compound, N-cinnamoyl phenethylamine was chosen as the lead compound, and a rational structure-optimization study was conducted on the basis of the pharmacophore model of previously reported compounds. The extremely potent umami-imparting compound 2-[[[2-[(1E)-2-(1,3-benzodioxol-5-yl)ethenyl]-4-oxazolyle]methoxy]methyl]pyridine, which exhibits 27,000 times the umami taste of MSG, was found. Its terminal pyridine residue and linear structure are suggested to be responsible for its strong activity. The time taken to reach maximum taste intensity exhibited by it, as determined by the time-intensity method, is 22.0 s, whereas the maximum taste intensity of MSG occurs immediately. This distinct difference in the time-course taste profile may be due to the hydrophobicity and strong receptor affinity of the new compound.  相似文献   
879.
880.
Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-β-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC–tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号